ROLE OF WETLAND AND CONSTRUCTED WETLAND IN WASTEWATER TREATMENT

Dr. Le Quoc Tuan Faculty. of Environment and Resources Nong Lam University, Vietnam

Introduction

- In the world and Asian countries, the water pollution has been become an urgent problem.
- Many technologies applied for wastewater treatment with high technique but expensive for standard of life in Vietnam.
- Eco-technology is the first choice for applications in wastewater treatment.
- Wetland and constructed wetland are necessary options for semi-tropical nations such as Asian countries.

NATURAL WETLAND Case Studies: Can Gio Mangrove Biosphere Reserve

CAN GIO BIOSPHERE RESERVE

- Area: 75,740 ha.
- Biosphere Reserve of the World and Vietnam.
- Biodiversity
- Aquaculture in transition zone affected core zone.
- Problems in planning and management

OVERVIEW OF ECOLOGICAL SYSTEM AT CAN GIO

Ecological system was divided into three zones:

- ✓ Core zone: Conservation of landscape, ecosystem and biodiversity. UNTOUCHABLE!
- ✓ **Buffer zone:** Surrounding of Core zone.
- ✓ Transition zone: Maintenance of agriculture, aquaculture activities, resident zone and the other activity.

PLANT BIODIVERSITY

Sonneratia Community

Rhizophora Community

Sonneratia and Avicennia Communities

Phoenix Community ack

ANIMAL BIODIVERSITY

BIODIVERSITY IN ENDANGER

BECAUSE OF....?

AQUACULTURE, AGRICULTURE ACTIVITIES AND WASTERWATER FROM CITIES

- Agriculture
- Aquaculture
 - Shrimp culture in rice field
 - Alternative shrimp culture
 - Industrial and intensive shrimp culture
- Receiving a mass of wastewater from Ho Chi Minh City and Dong Nai province

Intensive shrimp culture

Polluted water from shrimp ponds

ECOLOGICAL SOLUTIONS

Proposed models and applications

APPLICATION OF ECOLOGICAL SYSTEM IN ENVRIONMENT PROTECTION

- Aquaculture management surround biosphere reserve.
- Control the effluent before discharging into ecological system.
- Create a ecosystem in shrimp culture pond.
- Using effluent from intensive shrimp culture for agricultural crop.

Ecological shrimp culture

Bivalves culture along river to filtrate water

Shrimp culture and rice crop at same site

Aquaculture from January – June

Rice crop from July – December

Proposed models for intensive and alternative culture to reduce the pollutants

A model for sustainable culture development using ecological system.

An application of ecosystem in reality

Ecological food chain has been implicated in industrial shrimp ponds

Application of effluent from shrimp culture for agriculture or natural wetland

Agricultural development for a sustainable and friendly environment

Wastewater from cities and province

DANGER for WETLAND

Receive a mass of polluted water from Dong Nai Prov. and Ho Chi Minh City.

Wastewater estimated

> 1,000,000 M³/day (Ho Chi Minh City) > 1,500,000 M³/day (Bien Hoa, Dong Nai Prov.)

Source: MONRE, 2008

All downstream to Can Gio Wetland

Reluted water from cities & industries

Dong Nai River

Can Gio Wetland

 Ads by Google
 Bali Indonesia Map
 Map
 Africa Physical Map
 Vietnam Travel Guide

Can Gio

Factory

River network possesses 31.76% of total area at Can Gio

CALCULATIONS FOR TREATMENT WETLAND

The hydraulic loading rate

$$q = \frac{Q}{A}$$

Q = inflowing hydraulic loading rate (m day⁻¹ or m yr⁻¹)
 Q = flow rate (m³ day⁻¹ or m³ yr⁻¹)
 A = Wetland surface area (m²)

ESTIMATION FOR WETLAND POTENTIAL IN WASTEWATER TREATMENT

The hydraulic loading rate

$$q = \frac{Q}{A}$$

Q = $38 \times 10^9 \text{ M}^3 \text{ yr}^{-1}$ A = $240 \times 10^6 \text{ M}^2$ $q = 158 \text{ M yr}^{-1}$

Minimum volume of wastewater Can Gio WETLAND can treat

7,000,000 M³ day⁻¹
Natural wetland activities in wastewater treatment

- ✓Bioprocesses
- ✓ Filtration
- ✓ Remediation
- ✓ Self-maintain and control
- ...many unknown mechanisms

Wetland Ecosystem activities for contaminant treatment

Nutrients and food web in wetland

e da mintaire

Wetlands support a rich food web, from microscopic algae and dragonfly larvae to alligators, and black bears.

Mark Sharp

NY Steel

THE OTHER INDISPENSIBLE VALUES

The importance of mangrove forest for humans and ecological environment

Direct values

- Fishing
- Bivalves culture
- Shrimp culture
- Research and Education
- Ecotourism

Indirect values

- Storm prevention
- Soil degradation prevention
- Water and air clarification
- Biodiversity conservation

The importance of natural wetland (Education)

Ecological values

Historical values

Planning for future development

TREATMENT AT SOURCE

CONSTRUCTED WETLAND FOR WASTEWATER TREAMENT

The **plants** grown in these plots are specifically chosen for their ability to assist in the biological treatment of water.

Plants act like biological pumps, converting sunlight into chemical energy and carrying oxygen from their leaves to their roots.

Water distributing system under surface

Two years of operation with cover of grass

Potential of constructed wetland

- TDS of influent ranged from 370 480 mg/L, but effluent only 8-14mg/L.
- Temp. of influent is normally higher than that of effluent from 1-2°C. This temperature ranged from 25 – 30°C.
- pH of influent normally low, ranging from 4.3 – 5.2. Otherwise, pH of effluent fluctuated in ranging 6.5 – 7.8.

Nitrogen

reached 91%. of wetland **Treatment efficiend** constructed

Reduction of N by the treatment system.

Phosphorus

Concentration of P inflow was unstable but outflow was relatively stable.

Efficiency of that system rose up to 94%.

Fluctuation of phosphorus in operation time

COD

COD in outflow reached US-EPA standard (<50mg/l).

Effluent could be used for watering gardens and landscape sites.

Water outflow could be considered a source of valuable fertilizer.

Fluctuation of COD in operation time

Contaminant removal mechanism in constructed wetland

Source: ROUX ASSOCIATES, INC.

Concluding remarks

- Designed wetland removed a significant of contaminants (COD, N, P and pathogens) from wastewater.
- Biomass of cover vegetation considerably increased
- >Easy and stable operation at low cost.
- >Applicable for other kinds of wastewater so far.

Some wetland applications

Natural wetland surrounding farmland

In urban with high population

Conclusion

Natural wetland has potential in water control and treatment.

Constructedwetlandremovedcontaminantsefficiently.

Full estimation of wetland values has been under investigation by multidisciplinary researchers.

Utilities of wetland for different purposes need to be controlled and managed carefully.

